AMPLITUDE ~PHASE RELATIONS IN THE ACOUSTIC
FIELDS OF ULTRASONIC MEASURING SYSTEMS
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The acoustic field of an ultrasonic measuring system having symmetrical transmitting and
receiving devices ig analyzed. The fundamental field equation is derived, along with relations
for the diffraction-induced phase changes and amplitude of the information-bearing signal.

For acoustic field investigations we adopt a symmetrical system [1] having identical piston-type
transmitting and receiving devices, which are separated by a distance x greater than their diameter and
much greater than the acoustic wavelength .

The determination of the parameters of an acoustic field requires that the wave equation for an in-
finite elastic medium be solved:

AY 4 k2 = 0, (1)
in which ¢ is the particle-velocity potential and k is the wave number, which is equal to 27 /A.

To simplify the analysis we assume that the investigated medium is perfectly elastic, homogeneous,
and isotropic. The attenuation ¢ of ultrasonic waves in the medium can be taken into account by the addi-
tion of an imaginary component i to the wave number k,

The boundary conditions state a uniform distribution of the particle-velocity amplitude Ugexp (i wt)
over the frontal surface of the transmitter as it executes harmonic oscillations at a eyclic frequency w,
and the absence of those oscillations outside the transmitting disk of radius a:

_%
dx

_ {UO exp(iof) fo 0<r<a,
2t 0 for r>a.

By the separation of variables and representation of the particle-velocity potential in a cylindrical
coordinate system in the form 3 = ¢4(r) 9,(x) we transform the wave equation (1) into the following set of
equations:

dr? roodr

quJl + _I_ dq:'l + 7]21’71 J— 0’
(@)
2,
e ==

in which 5 is a parameter independent of the coordinates.
These equations have the general solutions
P (1) = &y (W) -+ &N, (1),
¥ () = eyexp (— x V=) 4 yexp (x VT — ),

where ¢4, £{, £;, and 52' are arbitrary constants,
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Since the zero-order Neumann function increases without bound as r — 0, while the particle-velocity
potential must maintain a finite value on the transmitter axis, we must set 51 equal to zero, At an infinite
distance the wave is completely extinct, and exp (x \/ni —K%) — o, 8o that ez = 0 as well,

Consequently, the particular solutions of the wave equation represent the products of zero-order
Bessel functions &J,(nr) and exponentials e, exp(—\/nE —kz), in which the independent parameter n is in-
determinate, For radiation into a half-space this parameter varies continuously, assumes any values, and
determines the particular solutions, The sum of infinitely many of the latter, comprising the general
solution of the wave equation, is written in integral form:

9 ) = [ el () exp(—x VP — R dn, (3)
0
In the expression obtained for the particle-velocity potential the product ¢ye, of arbitrary constants,

given the boundary condition

14
Oox

r T
=:§~f§§l£%%——fi—n%(n0ndn::LQeprwﬂ for 0<r<a
K==0

can be evaluated according to the Hankel inversion equation:

a

\g U, exp (iot) Jo (nr) rdr =

1 al, exp (iwt)
Vu—k

Vi—p J1( a). (4)

£,8, ==

The parameters of the information-bearing (useful) signal from the ultrasonic measuring system are
determined by the amplitude and phase of the average acoustic pressure on the receiver, p, which is
expressed in terms of the acoustic pressure p(r, x) at separate points of the axisymmetrical acoustic field
in a plane orthogonal to the transmitter axis:

a

p= %2—\8 p(r, x) rdr. (5)

0

From expressions (3)-(5), using the relation between the acoustic pressure and particle- velocity
potential; p(r, x) = ik(py/Uy ¥ (r, x), we determine the functional dependence of the average receiver pres-
sure on the coordinate x and parameter 5:

o of —x V E—R) P (na)
— 9ikap, | SRU@L—xV W rma) g (6)
g %y Ve —F na

1]
where p; is the acoustic pressure amplitude on the frontal surface of the transmitter.

Reducing the power of the first-order Bessel function in expression (6) by the transformation [2]

11

2
J11(]‘r|aa) = —fln— S‘ sinf cos? B J, (2nasin B) dp

o

with the introduction of the variable of integration g, we arrive at the result

2

~ . me b2
exp (i) Ycoszﬁdﬁj‘ b exp(—xv ' —Fk)
0

Vnr—k

4zkp0 J, () dn, (7)

in which b = 2gsing.

The improper integral in Eq. (7) is evaluated by multiplying the left- and right-hand sides of the
tollowing well- known type of relation in the theory of Bessel functions by rdr:

¢ exp(—xv ¥ —&%) exp(-—i/’n/xﬂﬁ-r2 )
Jo (Mr) nd e
Y Vo — R (v)mén = vV Xt

899



and integrating them from 0 to b:

(, exp(—xVTE—R) I
Sb V i —E2 Ji(m)dn = % [exp (— ikx)

—exp(—ikV D7) (8)

From expression (7) and (8), substituting the variable of integration g =9/2, we deduce the initial
formula for the average acoustic pressure:

n
D= Dpyexp [i (0f—kx)]— —%(L exp (iwt)j (1 + cos®) exp(— ik V ¥ —2a% cos8) db, (9)
0

in which x; = Vx* + 242,

This formula indicates that the average pressure on the receiver has two components, the first of
which corresponds to a plane wave having an infinite front. The second component corresponds to dif--
fracted waves, and its value pq determines the diffraction variations of the amplitude and phase of the
useful signal,

Replacing the radical inthe exponent by a power series with four terms retained in the expansion, we
transform the diffraction component as follows:
a

Pg=— ——exp [z(wt—kx——q)]j exp [i (g cos8 — ysin?8)] (1 -- cos 6) db, (10)
b

where

ka2 at kat | | a?cos0
== 1 d == l -
9 x ( + 2% ) and ¥ 23 ( + 2} )

Then, replacing exp(—iy sin?g) by a power series with | terms of the expansion and executing ap-

propriate transformation, we find in place of the integral on the right-hand side of Eq. (10) a set of 27 + 6
integrals of two types, expressed directly in terms of gamma functions and Bessel functions:

S‘exp (ig cos 6) sin®"9d8 — I ( —;—) r ( ) (%)m I.(a),

2m+!r( ; )I’(m-]—%)

(2m + 1) q Jm+1 (4)

I
5‘ €xp (i cos0) sin®" 0 cos 6dO = in
b

with indices m =0,1,2,...,1 + 2. It is verified by analysis that when the inequalities

2a kat
<.1 and —<n
2x 1

hold, the values of the integrals with nonzero indices can be neglected on account of their smallness, and

Py = —poexpli(of —kx —q)l [Jy(q) + iJ, (g)]. (11)

The fundamental equation for the acoustic field on an ultrasonic measuring system with allowance for
attenuation can therefore be represented in the form

2nx

p=poerp | o= 25 ) —ar] (1~ (@ + i@l exp (—ig)

) _ax] , (12)

or

-



where

e =V 1473 + 539 —21J,(9)cosq + /1 (@)sing] ; (13)

Jy(q)sing — Jy(g)cos g (14)

@ = arctg L .
1 4-J1(g)sing —Jy(g) cosq

These relations make it possible to determine precisely the diffraction attenuation g of the amplitude
and the phase shift ¢ ' of the useful signal from an ultrasonic measuring system. The results of calcula-
tions of these parameters exhibit good agreement with experiment.
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